Qn		Working	Answer	Mark	Notes			
1	(a)(i)		7 ⁸	1	B1			
	(ii)		414	1	B1			
	(b)	5^n 5^3 5^{10} on 5^n 5^n	7	2	M1 or a correct equation in <i>n</i> , e.g. $n + 3 = 10$			
		$5 \times 5^{\circ} = 5^{\circ}$ or $\frac{1}{5^{6}} = 5^{\circ}$ or			or $n + 3 - 6 = 4$			
		$\frac{5^n}{5^3} = 5^4$ or $5^{n+3} = 5^{4+6}$			A1 cao			
2			21	2	M1 3 or 7 identified as a common factor			
					A1 cao			
3		525 ÷ 3	875	2	M1			
					A1 cao			
4		3 + 5 + 7 or 15	42	3	M1 15 may be denominator of fraction or coefficient in an			
					equation such as $15x = 90$			
		$90 \div (3 + 5 + 7)$ or $90 \div 15$			M1 dep			
		or 6 or $\frac{7}{15}$ oe						
					A1			

Practice Tests Set 7 – Paper 1H mark scheme – Spring 2018

Qn		Working	Answer	Mark	Notes	
5	(i)		3x + 7	2	M1 for $x + x + 3 + x + 4$	
					A1 cao	
	(ii)		21	3	M1 for $3x = 54$	
					M1 for $x = 18$	
					A1 cao	
6	(a)		7.5×10^{4}	1	B1 cao	
	(b)		$7.5 imes 10^{-8}$	2	M1 for 7.5 $7.5 \times 10^4 \times 10^{-12}$	
					A1 cao	
7			Maths with correct	2	M1 for correct method to find figure(s) to compare,	
			figure(s)		e.g. $\frac{32}{80} \times 100$ (= 40) oe or 0.38×80 oe (= 30.4)	
					C1 for maths with 40% or 30.4 or $\frac{40}{100}$ and $\frac{38}{100}$ oe.	
8		$72 \div 1 \frac{1}{2}$ oe	54	3	B1M1 accept 72 \div 1.33 (2dp or better) or 0.9 \times 60	
		3			(B1 M0 for $72 \div 1.2(0) \{= 60\}$ or $72 \div 80 \{= 0.9\}$	
					or 72 ÷ 1.3 {=55.4 or better}) or 72000 ÷ 1.33(or better)	
					A1 cao	

Qn	Working	Answer	Mark	Notes
9	240 OR 6 × 40 OR 48	16	3	M1
	(can be implied)			A1
	3x + 102 + 60 + 30 = 240			B1
	OR			
	$\frac{192 + 60 + 30 + 3x}{6} = 40$			
10	$24 = \frac{k}{k}$	192	4	M1
	2^{3}			A1
		-4		M1
	$x = \sqrt[3]{-3}$			A1

Qn		Working	Answer	Mark	Notes
11		$\frac{(5-2)\times 180}{0}$ OR	108°	2	M1
		5			A1
		$180 - \frac{360}{5}$			
		Either $\angle EDF = 38^{\circ}$ or	241°	4	M1
		$\angle DEF = 23^{\circ}$			A1
		<i>Note: Angle(s) may be</i> <i>marked on the diagram</i>			M1
		$\angle EDF = 38^{\circ}$ and			A1
		$\angle DEF = 23^{\circ}$			
		obtuse $\angle DFE$ = 180 - "38" - "23"			
		reflex			
		$\angle DFE = 360 - "119"$			
		reflex $\angle DFE = 241$			
12	(a)	1 +7 or 8			M1 for sight of 8.8 may be denominator of fraction or
					coefficient in an equation such as $8x = 32$
		$\frac{32}{8} = 4, 4 \times 7 = 28$	28	2	A1 cao
	(b)	$32 \times 45 = 1440$ or $14.4(0)$ m		3	M1
		"1440" ÷ 48			M1 dep
			30		A1 cao

Qn		Working	Answer	Mark	Notes			
13		1% of 7500 = 75		3	M2 for 1.01 ² x 7500			
		1% of 7575 = 75.75						
		Total = 75.75 + 75 =	150.75		A1 cao			
		150.75						
14	(a)	a, b, a + b, a + 2b, 2a + 3b	Shown	2	M1 Adding pairs of successive terms			
					C1			
	(b)	3a + 5b = 29	a = 3, b = 4	3	P1 Process to set up two equations			
		a + b = 7			P1 Process to solve equations			
		3a + 3b = 21			A1 cao			
		b = 4, a = 3						
15			Events independent	C1	Statement that events are independent			
16			-2	M1	$81 = 3^4 \text{ or } \frac{1}{81} = 3^{-4}$			
				A1	cao			

Qn		Working	Answer	Mark	Notes	
17	(a)	(20, 4) (40, 16) (60, 42)		2	M1 (ft from sensible table i.e. clear attempt at addition)	
		(80, 84)			for at least 4 points plotted correctly at end of interval	
		(100, 96) (120, 100)			or	
					for all 6 points plotted consistently within each interval in	
					the freq table at the correct height	
			correct cf graph		A1 accept curve or line segments	
					accept curve that is not joined to (0,0)	
	(b)	Reading from graph		2	M1 for evidence of using graph at $t = 70$	
		at $t = 70$			ft from a cumulative frequency graph provided method is	
					shown	
			36 - 38		A1 100 – '63' ft from a cf graph	
					ft from a cumulative frequency graph provided method i	
					shown	
18		540/5 (108)	1296	3	B1	
		"108" × 12 (o.e.)			M1	
		£ 1296			A1	

Qn		Working	Answer	Mark	Notes
19		$\sqrt{(8 \times 6)} + \sqrt{(18 \times 6)}$ $(2\sqrt{2} \times \sqrt{6}) + (3\sqrt{2} \times \sqrt{6})$	$\frac{10}{\sqrt{2}}$	3	M1 $\sqrt{(16 \times 3)} + \sqrt{(36 \times 3)} (= 10\sqrt{3})$ M1 10 $\sqrt{3} \times \frac{\sqrt{2}}{\sqrt{2}}$ or $\frac{10\sqrt{3}}{\sqrt{6}}$
					A1 (dep on at least one M1)
20	(i)		18	3	M1 Uses frequency density for under 80 bar eg 7÷10
					M1 Completes method to find over 95 minutes frequency eg 1.2×20 and 2.2×5
					A1 35 cao
	(ii)		Reasoning	1	C1 Correct explanation about grouped data so actual values between 95 and 120 unknown
21		$2x - 4 = x^{2} - 4x + 4$ $x^{2} - 6x + 8 = 0$ $(x - 4)(x - 2) = 0$ $x = 4, x = 2$ When $x = 4, y = 4$ When $x = 2, y = 0$ $4 - 2 = 2$ $4 - 0 = 4$ $2^{2} + 4^{2}$	√20	6	P1 for a process to eliminate y, e.g. $2x - 4 = x^2 - 4x + 4$ followed by reduction to 3 term quadratic P1 for factorisation or formula for a 3 term quadratic = 0 P1 for a process to find the values of y A1 all 4 values ($x = 4$ y = 4, and $x = 2$, $y = 0$) P1 for a correct process to find the distance ² or distance between the 2 points, e.g. $('4' - '2')^2 + ('4' - '0')^2$ A1 $\sqrt{20}$

Qn Working		Answer	Mark	Notes	
22	$a^2 \times 10^{2n}$		3	M1	
		$\frac{a^2}{10} \times 10^{2n+1}$		A1 for $\frac{a^2}{10}$ oe	
				A1 $\times 10^{2n+1}$ oe	
23		35°	4	M1 for $ABC = 90$	
				M1 for (<i>ACB</i> =) 180 – 90 – 25 (= 65)	
				M1 for (<i>DBC</i> =) 180 - '65' - 80 (=35)	
				A1 cao supported by working OR	
				M1 for (<i>AOB</i> =) 180 – 2 × 25 (= 130)	
				M1 for (<i>ADB</i> =) 130 ÷ 2 (=65)	
				M1 for $(DAC =)$ 180 – 65 – 80	
				A1 cao supported by working.	

Suggested grade boundaries

	9	8	7	6	5	4
Paper 1H	68	60	52	44	35	26
Paper 2H	72	62	52	42	32	22
Paper 3H	58	50	42	34	26	18
Total	198	172	146	120	93	66