Practice Tests Set 7 - Paper 1H mark scheme - Spring 2018

Q		Working	Answer	Mark	Notes
5	(i) (ii)		$3 x+7$ 21	2 3	M1 for $x+x+3+x+4$ A1 cao M1 for $3 x=54$ M1 for $x=18$ A1 cao
6	(a) (b)		$\begin{aligned} & 7.5 \times 10^{4} \\ & 7.5 \times 10^{-8} \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	B1 cao M1 for $7.57 .5 \times 10^{4} \times 10^{-12}$ A1 cao
7			Maths with correct comparative figure(s)	2	M1 for correct method to find figure(s) to compare, e.g. $\frac{32}{80} \times 100(=40)$ oe or 0.38×80 oe $(=30.4)$ C1 for maths with 40% or 30.4 or $\frac{40}{100}$ and $\frac{38}{100}$ oe.
8		$72 \div 1 \frac{1}{3} \text { oe }$	54	3	B1M1 accept $72 \div 1.33$ (2 dp or better) or 0.9×60 (B1 M0 for $72 \div 1.2(0)\{=60\}$ or $72 \div 80\{=0.9\}$ or $72 \div 1.3\{=55.4$ or better $\}$) or $72000 \div 1.33$ (or better) A1 cao

Qn	Working	Answer	Mark	Notes
9	240 OR 6×40 OR 48 (can be implied) $3 x+102+60+30=240$ OR $\frac{192+60+30+3 x}{6}=40$	16	3	M1 A1 B1
10	$\begin{aligned} & 24=\frac{k}{2^{3}} \\ & x=\sqrt[3]{\frac{192}{-3}} \end{aligned}$	192 -4	4	M1 A1 M1 A1

Qn		Working	Answer	Mark	Notes
11		$\begin{aligned} & \frac{(5-2) \times 180}{5} \text { OR } \\ & 180-\frac{360}{5} \end{aligned}$ Either $\angle E D F=38^{\circ}$ or $\angle D E F=23^{\circ}$ Note: Angle(s) may be marked on the diagram $\begin{aligned} & \angle E D F=38^{\circ} \text { and } \\ & \angle D E F=23^{\circ} \\ & \text { obtuse } \angle D F E \\ & =180-" 38^{\prime}-" 23 " \\ & \text { reflex } \\ & \angle D F E=360-" 119 " \\ & \text { reflex } \angle D F E=241 \end{aligned}$		2 4	M1 A1 M1 A1 M1 A1
12	(a) (b)	$\begin{aligned} & 1+7 \text { or } 8 \\ & \frac{32}{8}=4, \quad 4 \times 7=28 \\ & 32 \times 45=1440 \text { or } 14.4(0) \mathrm{m} \\ & " 1440 " \div 48 \end{aligned}$	28 30	2 3	M1 for sight of 8.8 may be denominator of fraction or coefficient in an equation such as $8 x=32$ A1 cao M1 M1 dep A1 cao

Qn		Working	Answer	Mark	Notes
13		$\begin{aligned} & 1 \% \text { of } 7500=75 \\ & 1 \% \text { of } 7575=75.75 \\ & \text { Total }=75.75+75= \\ & 150.75 \end{aligned}$	150.75	3	M2 for $1.01^{2} \times 7500$ A1 cao
14	(a) (b)	$\begin{aligned} & a, b, a+b, a+2 b, 2 a+3 b \\ & 3 a+5 b=29 \\ & a+b=7 \\ & 3 a+3 b=21 \\ & b=4, a=3 \end{aligned}$	Shown $a=3, b=4$	2 3	M1 Adding pairs of successive terms C1 P1 Process to set up two equations P1 Process to solve equations A1 cao
15			Events independent	C1	Statement that events are independent
16			-2	M1 A1	$\begin{aligned} & 81=3^{4} \text { or } \frac{1}{81}=3^{-4} \\ & \text { cao } \end{aligned}$

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Qn} \& Working \& Answer \& Mark \& Notes

\hline 17 \& (a)

(b) \& | $\begin{aligned} & (20,4)(40,16)(60,42) \\ & (80,84) \\ & (100,96)(120,100) \end{aligned}$ |
| :--- |
| Reading from graph at $t=70$ | \& correct cf graph

$$
36-38
$$ \& 2

2 \& | M1 (ft from sensible table i.e. clear attempt at addition) for at least 4 points plotted correctly at end of interval or |
| :--- |
| for all 6 points plotted consistently within each interval in the freq table at the correct height |
| A1 accept curve or line segments accept curve that is not joined to $(0,0)$ |
| M1 for evidence of using graph at $t=70$ |
| ft from a cumulative frequency graph provided method is shown |
| A1 100 - ' 63 ' ft from a cf graph |
| ft from a cumulative frequency graph provided method is shown |

\hline 18 \& \& \[
$$
\begin{aligned}
& 540 / 5(108) \\
& " 108 " \times 12 \text { (o.e.) } \\
& £ 1296
\end{aligned}
$$

\] \& 1296 \& 3 \& | B1 |
| :--- |
| M1 |
| A1 |

\hline
\end{tabular}

Qn		Working	Answer	Mark	Notes
19		$\begin{aligned} & \sqrt{ }(8 \times 6)+\sqrt{ }(18 \times 6) \\ & (2 \sqrt{ } 2 \times \sqrt{ } 6)+(3 \sqrt{ } 2 \times \sqrt{ } 6) \end{aligned}$	$\frac{10}{\sqrt{ } 2}$	3	M1 $\sqrt{ }(16 \times 3)+\sqrt{ }(36 \times 3)(=10 \sqrt{ } 3)$ M1 $10 \sqrt{ } 3 \times \frac{\sqrt{ } 2}{\sqrt{ } 2}$ or $\frac{10 \sqrt{ } 3}{\sqrt{ } 6}$ A1 (dep on at least one M1)
20	(i) (ii)		18 Reasoning	3 1	M1 Uses frequency density for under 80 bar eg $7 \div 10$ M1 Completes method to find over 95 minutes frequency eg 1.2×20 and 2.2×5 A1 35 cao C1 Correct explanation about grouped data so actual values between 95 and 120 unknown
21		$\begin{aligned} & 2 x-4=x^{2}-4 x+4 \\ & x^{2}-6 x+8=0 \\ & (x-4)(x-2)=0 \\ & x=4, \quad x=2 \end{aligned}$ When $x=4, y=4$ When $x=2, y=0$ $4-2=2$ $4-0=4$ $2^{2}+4^{2}$	$\sqrt{ } 20$	6	P1 for a process to eliminate y, e.g. $2 x-4=x^{2}-4 x+4$ followed by reduction to 3 term quadratic P1 for factorisation or formula for a 3 term quadratic $=0$ P1 for a process to find the values of y A1 all 4 values ($x=4 y=4$, and $x=2, y=0$) P1 for a correct process to find the distance ${ }^{2}$ or distance between the 2 points, e.g. ('4' - '2') ${ }^{2}+\left({ }^{\prime} 4 '^{\prime}-0^{\prime}\right)^{2}$ A1 $\sqrt{ } 20$

Qn	Working	Answer	Mark	Notes	
$\mathbf{2 2}$		$a^{2} \times 10^{2 n}$		3	M1
23			$35^{\circ} \times 10^{2 n+1}$		A1 for $\frac{a^{2}}{10}$ oe A1 $\times 10^{2 n+1}$ oe
			4	M1 for $A B C=90$ M1 for $(A C B=) 180-90-25(=65)$ M1 for $(D B C=) 180-‘ 65 \prime-80(=35)$ A1 cao supported by working OR M1 for $(A O B=) 180-2 \times 25(=130)$ M1 for $(A D B=) 130 \div 2(=65)$ M1 for $(D A C=) 180-65-80$ A1 cao supported by working.	

Suggested grade boundaries

	9	8	7	6	5	4
Paper 1H	68	60	52	44	35	26
Paper 2H	72	62	52	42	32	22
Paper 3H	58	50	42	34	26	18
Total	198	172	146	120	93	66

